Mark Scheme (Results)

Summer 2015

IAL Chemistry (WCH03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code IA041108*
All the material in this publication is copyright
© Pearson Education Ltd 2015

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (i)}$	Sodium (ion)/ Na If name AND formula are given BOTH must be correct	Na	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a) (\text { ii) }}$	Carbonate (ion)/ $\mathrm{CO}_{3}{ }^{2-}$ OR $\mathrm{CO}_{3}^{-2} / \mathrm{CO}_{3}^{--}$ OR $\mathrm{Hydrogencarbonate} \mathrm{(ion)/} \mathrm{HCO}_{3}^{-}$ ALLOW Hydrogen carbonate (ion) If name AND and formula are given BOTH must be correct	1	

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ Reactants with state symbols Products and state symbols Allow All formulae correct but one or more errors in state symbols All formulae and state symbols correct but incorrect balancing numbers included $\begin{equation*} \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \text { for } \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \tag{1} \end{equation*}$ Ignore multiples if equation is balanced	$\begin{align*} & \mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \\ & \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{I}) \\ & \mathrm{Ca}^{2+}(\mathrm{aq})+ \tag{1}\\ & \mathrm{CO}_{3}^{2-}(\mathrm{aq}) \tag{1}\\ & \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s}) \tag{1} \end{align*}$	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (b) (i)}$	Crimson/red/ dark red/bright red / persistent red/scarlet (coloured flame)	Orange Brick red Carmine	1

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	White precipitate	ALLOW White solid/crystals ppt/ppte for precipitate	Yellow ppt Off-white ppt
Additional incorrect observations eg white ppt and effervescence or steamy fumes	1		
Ignore comments about getting darker/turning purple on standing	Change on standing to cream or yellow		

Question Number	Acceptable Answers	Reject	Mark
1(b) (iii)	TEST Add dilute (aqueous) ammonia (solution) / $\mathrm{NH}_{3} / \mathrm{NH}_{3}(\mathrm{aq})$ ALLOW Dilute $\mathrm{NH}_{4} \mathrm{OH}$ /ammonium hydroxide IGNORE Additional test with concentrated NH_{3} (1) RESULT Precipitate dissolves / (colourless) solution forms ALLOW mixture dissolves / precipitate disappears/ solid dissolves / precipitate is soluble Second mark depends on use of ammonia in first, even concentrated. ALLOW TEST add concentrated sulfuric acid to ppt (1) RESULT Steamy fumes (only)/ no brown AND no purple fumes ALLOW White fumes Second mark depends on use of sulfuric acid.	Just "ammonia / NH_{3} " Use of ammonia on glass rod Incorrectly identified precipitate dissolves e.g. strontium chloride dissolves	2

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \text { 1(b)(iv) } & \text { (goes) dark / purple / grey } & & \text { Goes blue-black } \\ & \text { ALLOW } & 2 \\ & \text { Black / lilac } & \text { (1) } & \begin{array}{l}\text { Silver colour/ } \\ \text { mirror }\end{array} \\ & \text { Silver / Ag (forms) } & \text { (1) } & \mathrm{Ag}^{+} \text {/ silver ions }\end{array}\right]$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (c)}$	$\mathrm{Sr}^{2+}+\mathrm{CO}_{3}{ }^{2-} \rightarrow \mathrm{SrCO}_{3}$		1
Ignore state symbols, even if incorrect Ignore full equation, written as "rough" work and mark ionic equation only.			

Total for Question 1 =11 marks

Question Number	Acceptable Answers	Reject	Mark
2(a)	TEST Add PCl_{5} / phosphorus(V) chloride / phosphorus pentachloride $/ \mathrm{SOCl}_{2} /$ thionyl chloride / sulphur dichloride oxide RESULT Mark depends on correct reagent, but allow PCl_{5} (aq) Steamy / misty / white fumes ALLOW Gas for fumes (1) I gnore incorrect identification of fumes OR TEST Add sodium / Na RESULT Mark depends on correct reagent Effervescence / bubbling / fizzing I gnore incorrect identification of fumes and tests for products white solid (forms) / sodium dissolves mixture gets hot	Acidified PCl_{5} / PCl_{5} (aq) Acidified dichromate(VI) PCl_{3} Test to form an ester Any smoke Just "HCl fumes" Just "gas turns litmus red" Just "hydrogen"	2

Question Number	Acceptable Answers	Reject	Mark
2(b)	(primary / secondary / tertiary) Alcohol and carboxylic acid	diol carboxyl cyclic alcohol specific alcohol eg ethanol	1
	ALLOW ROH and RCOOH $\mathrm{R}_{2} \mathrm{CHOH} / \mathrm{R}_{3} \mathrm{COH}$ for ROH $\mathrm{C}_{n} \mathrm{H}_{2 n+1 \mathrm{OH} \text { for ROH }}$ $\mathrm{RCO}_{2} \mathrm{H}$ for RCOOH Phenol(s) (as one alternative) Fatty acid / alkanoic acid for carboxylic acid		

Question Number	Acceptable Answers	Reject	Mark
2(c)	Z identified as tertiary alcohol (1) Justification: Any one from		2
	Test with litmus Not (carboxylic) acid because there is no change (in (blue) litmus paper) It's an alcohol because there is no change (in (red / blue) litmus paper)	It is neutral /not an acid or an alkali because there is no change (in (red / blue) litmus paper)	Test with dichromate It is a tertiary alcohol because it can't be oxidized (by acidified dichromate(VI))/ doesn't react with acidified dichromate(VI)
It is not a primary or secondary alcohol because it can't be oxidized (by acidified dichromate(VI))/ doesn't react with acidified dichromate(VI)	IGNORE Not an amine If more than one justification is given, both must be correct		

Question Number	Acceptable Answers	Reject	Mark
2(d)	MP1 ($0.1 \mathrm{~mol} \mathbf{Z}$ produces) 0.4 mol CO 2 OR $1 \mathrm{~mol} Z$ produces 4 mol CO 2 MP2 (dependent on MP1 awarded) So \mathbf{Z} has 4C atoms ALLOW Formula shown with 4C MP3 (stand alone) OR ALLOW undisplayed CH_{3} and OH as above Skeletal formula	Just 9.6/24 = 0.4 with no reference to what numbers refer to or if not applied Only if bond clearly shown to the H of OH	3

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{2 (e) (i)}$	Molecular ions have same m/e ALLOW same molecular ion isomers have same molar mass / molecular mass molecular ion with same mass same maximum m/e value same peak furthest to right same last peak Parent ion / M				
IGNOR molecular ion Reference to peak heights	Same fragments Same m/e value for highest peak	1			
Similar for					
"same"				\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
2(e)(ii)	They both have an (absorption) peak for (wavenumber of) alcohol / hydroxyl group / O-H	Absorption for $\mathrm{C}-\mathrm{OH}$	1
	ALLOW both have peak for $-\mathrm{OH} / \mathrm{OH}$ frequency / wavelength for wavenumber	IGNORE wavenumber values have peak with specific shape for OH	

Total for Question 2 = 10 marks

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	Correct final answer with + sign, 3 sf and units scores 3 $\begin{array}{\|l} (25 \times 4.18 \times 10.5)=1097.25(\mathrm{~J}) / \\ \text { l.097 kJ } \\ \text { Ignore sign if given } \tag{1} \end{array}$ $\mathrm{Mol} \mathrm{NH} 44 \mathrm{Cl}=(5.00 / 53.5)=0.09346 /$ $\begin{equation*} 0.0935 \tag{1} \end{equation*}$ $\begin{aligned} & \Delta \mathrm{H}_{\text {solution }}=(+1.097 / 0.09346) \\ & (=+11.7376 /+11.7406) \\ & =+11.7 \mathrm{~kJ} \mathrm{~mol}^{-1} \\ & \mathrm{OR} \\ & +\mathbf{1 1 7 0 0} \mathrm{J} \mathrm{~mol}^{-1} \end{aligned}$ Sign, unit and sf must be correct for third mark Use of 2sf earlier may lead to an inaccurate answer ALLOW Final answer $=+11.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ from rounding of MP1 and/or MP2 TE from each step to the next If mass used is 30 g Energy transferred $=1316.7 \mathrm{~J}$ $\Delta \mathrm{H}_{\text {solution }}=+14.1 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad \max (2)$ If mass used is 5 g Energy transferred $=219.45 \mathrm{~J}$ $\Delta \mathrm{H}_{\text {solution }}=+2.35 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $\max (2)$	Answers not to 3 sf No sign or negative sign	3

Question Number	Acceptable Answers	Reject	Mark
3(a)(ii)	First mark is for calculation of error. Second mark is for comparison of temperature error to mass error.		2
	Uncertainty in mass $=$ $(0.005 \times 100 \times 2 / 5.00)=(\pm) 0.2 \% \quad(1)$ Uncertainty / error in mass measurement (much) smaller than uncertainty in temperature reading (1)	Just "0.2\% is negligible / very small"	Second mark depends on first being correct, but allow second mark if mass error is 0.1\% (as 0.005 not doubled)

Question Number	Acceptable Answers	Reject	Mark
3(b)(i)	Points (close to the) horizontal from starting temperature at 0,1 and 2 (and 3) minutes Points (on a line) rising from a minimum up to 10 minutes (at least 2 points needed at the warming up stage for extrapolation.) The minimum can be at $4,5,6,7$ or 8 minutes. (1)	Large change of temperature at 3 minutes Cooling curve instead of warming curve	2

Question Number	Acceptable Answers	Reject	Mark
3(b)(ii)	Line through temperature points where warming occurs extrapolated back to 3 minutes. ALLOW Line at minimum temperature shown as staying horizontal and extrapolated back Max temperature change indicated as vertical difference between starting temperature and extrapolated line at 3 minute TE if cooling curve drawn in 3(b)(i) for both marks.		2

Question Number	Acceptable Answers	Reject	Mark
3(b)(iii)	To check water temperature is steady / constant OR To deduce temperature at 3 mins / at start by extrapolation of line	Water temperature may change	1
Minerals in water may affect result	ALLOW to allow water temperature to equilibrate with surroundings/ to reach temperature of surroundings/ to acclimatise	IGNORE to get initial temperature accurate	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i)}$	Heat must be supplied (and cannot be measured)	Just " because it is endothermic" ALLOW impossible to tell when/if reaction is complete reaction goes to equilibrium/ is reversible	1
Needs high temperature	IGNORE reference to gases escaping / products are gases / hazards		

Question Number	Acceptable Answers	Reject	Mark
3(c)(ii)	$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$ $\Delta \mathrm{H}_{\text {reaction }}$$\mathrm{NH}_{3}(\mathrm{~g})+$ $\mathrm{HCl}(\mathrm{g})$ $\Delta \mathrm{H}_{1} \downarrow$ $\mathrm{NH}_{4}+\Delta \mathrm{H}_{3} \downarrow$ OR 2 separate parallel arrows for $\Delta \mathrm{H}_{2}$ $+\Delta \mathrm{H}_{3}$ OR $\Delta \mathrm{H}_{2} \Delta \mathrm{H}_{3}$ next to one arrow without being separated by + ALLOW Arrows reversed if signs of enthalpy changes are reversed. IGNORE Any water molecules added/ aq signs / other reactant species Arrow size		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (i i i)}$	$\Delta \mathrm{H}_{\text {reaction }}=\Delta \mathrm{H}_{1}-\Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{3}-\Delta \mathrm{H}_{4}$		1
	ALLOW any order of terms with correct signs Any correct use of brackets No TE on incorrect cycle		

Question Number	Acceptable Answers	Reject	Mark
4(a)	Two different hazards must be given to score 2 marks. Phosphoric acid corrosive ALLOW burns skin/ damages skin (1)	Additional hazards e.g. irritant harms skin carcinogenic	2
Cyclohexanol / cyclohexene (in) flammable	Additional hazards e.g. explosive carcinogenic	ALLOW Irritant IGNORE Comments on glass wool, calcium chloride Cyclohexene / cyclohexanol is volatile	(1)

Question Number	Acceptable Answers	Reject	Mark
4(b)	Correct final answer scores (2) $\begin{align*} & \text { Mass of } 12 \mathrm{~cm}^{3} \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OH}= \\ & 12 \times 0.962 \tag{1}\\ & =11.544 / 11.54 / 11.5(\mathrm{~g}) \end{align*}$ Number of moles $=$ $(11.544 / 100=0.11544)$ $=0.115 / 0.12(\mathrm{~mol})$ ALLOW TE from incorrect mass Ignore sf except 1 sf	0.11	2

Question Number	Acceptable Answers	Reject	Mark
4(c)	Flask with heat source AND stillhead AND a closed system to the left hand side of the outlet to the condenser. Heat source can be electrical heater, water bath ALLOW bunsen or just arrow ALLOW appropriate tubing or flask with long neck as alternative to stillhead Bulb of thermometer opposite opening to condenser Water condenser sloping downwards AND direction of water Connected to receiver with a vent OR delivery tube to an open narrow necked flask Ignore fractionating column if included. Drawing showing reflux distillation scores max 1 for water direction in condenser.	Conical flask Sealed receiver, beaker	4

Question Number	Acceptable Answers	Reject	Mark
4(d)	Dehydrating agent removes water in a (chemical) reaction OR causes two H and one O atoms to be lost (in a reaction) OR removes the elements of water (from reactant molecules) OR removes water from molecules of a compound	Reference to removal of solvents other than water	2
	ALLOW answers indicating a reaction occurs eg H protonates OH in alcohol forming water removes water causing bonds to break reference to elimination reactions		
	(1)		
Drying agent removes water mixed with other materials OR removes water from a mixture OR removes water in a physical change			

Question Number	Acceptable Answers	Reject	Mark
4(e)	Glass wool less absorbent OR No cyclohexene left on wool OR filtration is faster through glass wool OR filter paper absorbs liquids/ product/ mixture		1
IGNORE yield is higher with glass wool/ lower with filter paper more efficient filtration			

Question Number	Acceptable Answers	Reject	Mark
4(f)	Look at final answer. If correct award 3 marks. There are several correct methods. All involve calculating a number of moles of cyclohexene, a mass of cyclohexanol and the use of the 75\% but these stages can be done in different orders. EITHER Need theoretical yield of ($10.0 \times$ 100/75) = $\begin{equation*} 13.3333 / 13.33 / 13.3 \mathrm{~g} \tag{1} \end{equation*}$ $\begin{equation*} 13.3333 \mathrm{~g}=(13.3333 / 82)=0.1626 / \tag{1} \end{equation*}$ 0.163 mol cyclohexene $0.1626 \mathrm{~mol} \text { cyclohexanol = } 16.26$ $\begin{equation*} 16.3 / 16 \mathrm{~g} \tag{1} \end{equation*}$ OR Mol of cyclohexene $=(10 / 82)=$ 0.12195 Mol of cyclohexanol $=(0.12195 \mathrm{x}$ $\begin{equation*} 100 / 75)=0.1626 \tag{1} \end{equation*}$ Mass of cyclohexanol $=(0.1626 \mathrm{x}$ $100)=16.26 / 16.3 / 16 \mathbf{g}$ OR Mol of cyclohexene $=(10 / 82)=$ 0.12195 Theoretical mass of cyclohexanol $=$ $(0.12195 \times 100)=12.195 / 12.2 \mathrm{~g}(1)$ Mass of cyclohexanol $=(12.2 x$ $100 / 75)=16.26 / 16.3 / 16 \mathbf{g}(1)$ ALLOW $16.2(\mathrm{~g})$ in all methods from rounding $9.146(\mathrm{~g})$ from incorrect use of 75% scores (2) Ignore SF in final answer except 1 SF	Theoretical yield $\begin{aligned} & =(10.0 x \\ & 75 / 100)=7.5 \mathrm{~g} \end{aligned}$ $\begin{align*} & (0.12195 x \\ & 75 / 100)= \\ & 0.09146 \tag{1} \end{align*}$	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (g) (i)}$	Brown / red-brown / orange / yellow/ yellow-brown to colourless	Red to colourless	1
ALLOW Brown / red-brown / orange / yellow is decolorised. IGNORE Clear for colourless			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{4 (g) (i i)}$		Benzene ring	1
	ALLOW Rings with CH_{2} and/or CHBr	Just skeletal formula/ molecular formula	
IGNORE Angles in ring Placing of H and Br inside or outside ring	Non-adjacent Br atoms		

Total for Question 4 = 16 marks

